Assessment Schedule - 2008

Statistics and Modelling: Use probability distribution models to solve straightforward problems (90646)

Evidence Statement

Question	Evidence	Code	Judgement
One	Normal distribution		
	P(X > 60.5)		
	= P(Z > 1.034)		
	= 0.5 - 0.3494		
	= 0.1506		
	(GC: 0.15046)	Α	Accept CAO without any working.
Two	Binomial distribution with $p = 0.05$, $n = 10$		
	P(X > 2) = 0.0116		
	(GC: 0.01151)	Α	Accept CAO without any working.
Three	Poisson distribution		
	$\lambda = 6$		
	$P(X \ge 12) = 0.02$		
	(GC: 0.02011)	Α	Accept CAO without any working.
Four	Total weight has a normal distribution with		
	$\mu = 2x1527.5 = 3055 \text{ g}$		
	$Var = 31.8^2 + 31.8^2$		
	so $\sigma = \sqrt{31.8^2 + 31.8^2} = 44.97199 \text{ g}$		
	$P(X < 3\ 000)$		
	P(Z < -1.223)		
	= 0.1107		
	(GC: 0.11066)	MA	Accept CAO without any working.
Five	Normal distribution		
	P(X > 752) = 0.9		
	For $P(z > a) = 0.9$, then		
	a = -1.2815		
	$-1.2815 = \frac{752 - \mu}{21.3}$		
	$\mu = 779.29595 \text{ g}$	MA	Accept CAO without any working.
Six	Poisson distribution		
	$\lambda = 0.5$		
	$P(X \ge 1) = 0.3935$	Α	
	P (two consecutive months)		
	$= 0.3935 \times 0.3935$		
	= 0.1548	М	Accept CAO without any working.
Seven	$P(X \ge 1) = 0.17$		
	P(X=0) = 0.83		
	$0.83 = \frac{e^{-\lambda} \times \lambda^0}{\Omega}$		
	$0.83 = {0!}$		
	$\lambda = 0.1863$		
	So the mean number of ferret attacks is 0.1863	EMA	Accept CAO without any working.

Eight	μ for distribution of 4 duck eggs and 2 goose eggs		
	=4(82.8)+2(146.3)		
	= 623.8 g		
	Var for distribution of 4 duck eggs and 2 goose		
	eggs		
	$= 6.98^2 + 6.98^2 + 6.98^2 + 6.98^2 + 1.96^2 + 1.96^2$		
	so σ for distribution of 4 duck eggs and 2 goose		
	eggs		
	$= \sqrt{6.98^2 + 6.98^2 + 6.98^2 + 6.98^2 + 1.96^2 + 1.96^2}$		
	= 14.2325 g		
	P(600 < X < 650)		
	= P(-1.6725 < Z < 1.8411)		
	= 0.45279 + 0.46720		Accept CAO without any working (may vary
	= 0.91999	EMA	with rounding of σ).
Nine	Binomial Distribution because:		Must state correct distribution AND
	• fixed number of trials, 10 eggs		Give at least 3 conditions, described in context.
	there are only two outcomes for each trial / binary trials, double-yolk or not		
	• probability of a success on each trial is constant, P(double-yolk) = 0.003		AND
	events / trials are independent, occurrences of double-yolk eggs are independent / given.		
	Parameters are $(n =) 10, (p =) 0.003$	E	State both parameters.
	OR		N
	n = 10, p = 0.003		Note: if suggesting a Poisson approximation, the candidate must first acknowledge the
			distribution is binomial and why, and then
			justify why an approximation could be used,
			giving the parameters of either the original binomial distribution, or the approximating
			distribution.
1		1	1

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Use probability distribution models to solve straightforward problems.	Use probability distribution models to solve problems.	Use and justify probability distribution models to solve complex problems.
2 A	3 M	2 E + 3 M
	OR	OR
	2 M + 2 A	2 E + 2 M + 2 A

The following Mathematics-specific marking conventions may also have been used in marking this paper:

- · errors are circled
- a caret (A) indicates an omission
- NS indicates there is not sufficient evidence to award a grade
- CON indicates "consistency" where an answer is obtained using a prior but incorrect answer, and NC indicates the answer is not consistent with wrong working
- CAO indicates the "correct answer only" is given but that the Assessment Schedule indicates that more evidence is required
- # indicates that a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer
- RAWW indicates "right answer, wrong working"
- **R** indicates "rounding error" and **PR** is "premature rounding", either of which results in a significant round-off error in the answer (if the question requires evidence for rounding)
- U indicates incorrect or omitted units (if the question requires evidence for units)
- MEI indicates where a minor error has been made and ignored.